Single and sparse view 3D reconstruction by learning shape priors

نویسندگان

  • Yu Chen
  • Roberto Cipolla
چکیده

In this paper, we aim to reconstruct free-form 3D models from only one or few silhouettes by learning the priorknowledge of a specific class of objects. Instead of heuristically proposing specific regularities and defining parametricmodels as previous research, our shape prior is learned directly from existing 3D models under a framework based onthe Gaussian Process Latent Variable Model (GPLVM). The major contributions of the paper include: 1) a frameworkfor learning the shape prior of the 3D objects, which requires no heuristic of the object, and can be easily generalized tohandle various categories of 3D objects, and 2) novel probabilistic inference schemes for automatically reconstructing3D shapes from the silhouette(s) in the single view or sparse views. Qualitative and quantitative experimental resultson both synthetic and real data demonstrate the efficacy of our new approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning a Multi-View Stereo Machine

We present a learnt system for multi-view stereopsis. In contrast to recent learning based methods for 3D reconstruction, we leverage the underlying 3D geometry of the problem through feature projection and unprojection along viewing rays. By formulating these operations in a differentiable manner, we are able to learn the system end-to-end for the task of metric 3D reconstruction. End-to-end l...

متن کامل

Silhouette-Based Variational Methods for Single View Reconstruction

We explore the 3D reconstruction of objects from a single view within an interactive framework by using silhouette information. In order to deal with the highly ill-posed nature of the problem we propose two different reconstruction priors: a shape and a volume prior and cast them into a variational problem formulation. For both priors we show that the corresponding relaxed optimization problem...

متن کامل

Deep Learning Reconstruction for 9-View Dual Energy CT Baggage Scanner

For homeland and transportation security applications, 2D X-ray explosive detection system (EDS) have been widely used, but they have limitations in recognizing 3D shape of the hidden objects. Among various types of 3D computed tomography (CT) systems to address this issue, this paper is interested in a stationary CT using fixed X-ray sources and detectors. However, due to the limited number of...

متن کامل

What You Sketch Is What You Get: 3D Sketching using Multi-View Deep Volumetric Prediction

Sketch-based modeling strives to bring the ease and immediacy of drawing to the 3D world. However, while drawings are easy for humans to create, they are very challenging for computers to interpret due to their sparsity and ambiguity. We propose a data-driven approach that tackles this challenge by learning to reconstruct 3D shapes from one or more drawings. At the core of our approach is a dee...

متن کامل

Modeling Complex Unfoliaged Trees from a Sparse Set of Images

We present a novel image-based technique for modeling complex unfoliaged trees. Existing tree modeling tools either require capturing a large number of views for dense 3D reconstruction or rely on user inputs and botanic rules to synthesize natural-looking tree geometry. In this paper, we focus on faithfully recovering real instead of realistically-looking tree geometry from a sparse set of ima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Vision and Image Understanding

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2011